A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes
نویسندگان
چکیده
BACKGROUND Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. RESULTS To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. CONCLUSIONS A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.
منابع مشابه
Genes Predisposing to Monogenic, Polygenic, and Syndromic Obesity: A Review of Current Trends and Prospects for Standard Obesity Genetic Testing
Objective: The burden of obesity is currently enormous, necessitating a novel strategy to complement the existing ones. Accordingly, genetic predisposition is suspected in many cases of the disease, which can potentially be used as therapeutic targets. However, there are differing viewpoints on the suspect genes, prompting the current review to articulate the genes and their mechanisms. Eight (...
متن کاملRelationship between obesity phenotypes and genetic determinants in a mouse model for juvenile obesity.
Obesity, a state of imbalance between lean mass and fat mass, is important for the etiology of diseases affected by the interplay of multiple genetic and environmental factors. Although genome-wide association studies have repeatedly associated genes with obesity and body weight, the mechanisms underlying the interaction between the muscle and adipose tissues remain unknown. Using 351 mice (at ...
متن کاملInterleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.
The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for in...
متن کاملCALL FOR PAPERS Updates on Mapping Quantitative Trait Loci Relationship between obesity phenotypes and genetic determinants in a mouse model for juvenile obesity
Brockmann GA, Schäfer N, Hesse C, Heise S, Neuschl C, Wagener A, Churchill GA, Li R. Relationship between obesity phenotypes and genetic determinants in a mouse model for juvenile obesity. Physiol Genomics 45: 817–826, 2013. First published August 6, 2013; doi:10.1152/physiolgenomics.00058.2013.—Obesity, a state of imbalance between lean mass and fat mass, is important for the etiology of disea...
متن کاملChanges in the transcriptome of abdominal subcutaneous adipose tissue in response to short-term overfeeding in lean and obese men.
BACKGROUND Obesity is caused by the excessive accumulation of adipose tissue as a result of a chronic energy surplus. Little is known regarding the molecular mechanisms involved in the response to an energy surplus in human adipose tissue at the genomic level. OBJECTIVE The objective was to investigate changes in the transcriptome of abdominal subcutaneous adipose tissue after a positive ener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011